Semi-Supervised Learning1 [ML] Semi-Supervised Learning (Active Learning) Active Learning Active Learning은 적은 수의 Labeled Data를 활용하여 Unlabeled Data에 대한 Annotation을 수행, 해당 데이터를 재 학습하는 과정을 통해 모델의 성능을 높이는 방법 중 하나이다 이때, Annotation 할 데이터를 무작위로 추출하지 않고, 적절한 Query 전략을 통해 현 모델 기준 불확실성이 높은 데이터를 우선적으로 Annotator에게 Labeling 해줄 것을 요청하는 것이 Active Learning의 핵심이다 학습 데이터를 확보하는 과정은 데이터를 수집하는 거소가 수집한 데이터에 유의미한 라벨을 붙이는 것으로 구성되어 있다. 일반적으로 유의미한 라벨을 붙이는 것이 데이터를 수집하는 것에 비해 시간과 비용이 많이 든다 그렇기에 .. 2023. 1. 29. 이전 1 다음